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Abstract

Time-inconsistent preferences, which are modeled by relative discount functions,

are a common explanation for the empirical finding that lifecycle profiles of house-

hold consumption are typically hump-shaped rather than monotonic. More precisely, a

time inconsistent preference which is present-biased can generate a hump-shaped con-

sumption profile over the lifecycle. We develop a general framework for understanding

”present bias” in consumption through a “future weighting factor” that perturbs the

discount factor of utility at future periods away from exponential discounting. Using

our framework we derive necessary and sufficient conditions on the future weighting

factors for the consumption profile to be locally concave. We find that these condi-

tions, which are necessary for the consumption profile to be hump-shaped, are stronger

than just assuming a present bias. Furthermore, we obtain necessary and sufficient

conditions under which the consumption profile determined in the first period of life

Pareto dominates the realized consumption profile. Pareto dominance of this initial

path must arise when the log consumption profile is strictly concave and the future

weighting factor at the longest delay is not too large.

JEL: D60, D90

Keywords: present bias, future bias, time-inconsistent preferences, consumption

hump, commitment mechanisms

∗We would like to thank Frank Caliendo and Scott Findley and participants at the SABE 2022 conference
for their input.
†Utah State University, John Huntsman School of Business, Utah, United States;

james.feigenbaum@usu.edu.
‡Utah State University, John Huntsman School of Business, Utah, United States; sepideh.raei@usu.edu.



1 Introduction

The canonical life-cycle model predicts that consumption will grow smoothly for patient

individuals and decay smoothly for impatient individuals. However, from an empirical stand-

point, one of the most striking aspects of people’s choices of consumption over the lifecycle is

that this profile is generally hump-shaped. As was first documented by ?, average consump-

tion increases while consumers are young, peaks when they reach middle age, and decreases

afterwards.1

A sizeable literature is devoted to developing theoretical frameworks that modify the

Lifecycle/Permanent-Income Hypothesis of Friedman and Modigliani (?, ?) to address the

inconsistency between model predictions and empirical evidence regarding the consumption

profile, which has been referred to as the “lifecycle consumption puzzle”.2 One strand of

literature that develops a set of solutions to this inconsistency by adding elements that are

directly observable such as family-size effects (?, ?, ?), consumption-leisure trade-offs (?, ?),

wage income uncertainty and the precautionary saving motive (?, ?, ?, ?, ?), mortality risk

(?, ?), and consumer durables (?).

Another set of mechanisms that can explain the hump in the consumption profile relax

the assumptions on preferences of the standard rational paradigm, epitomized by ?. One of

the most popular of these is to allow for time-inconsistent preferences by generalizing the

discount function from an exponential function. ? was the first to explore such deviations

from Samuelson’s model. ? later proposed the hyperbolic function as a specific alternative to

the exponential function, and David Laibson’s dissertation (?) offered hyperbolic discounting

as a solution to the consumption hump puzzle. Today, this strand of the literature generally

attributes such consumption humps to the concept of ”present bias”.3

This paper develops a general framework for understanding the concept of “present bias”

in consumption through a “weighting factor” that perturbs the discount factor of utility

at future periods away from exponential discounting. It is essentially a generalization that

nests the well-known hyperbolic and quasi-hyperbolic preferences, and which permits more

general statements about necessary conditions for present bias and a concave log consumption

profile (a known property of present bias). Using this representation, we establish conditions

1See ?, ?, ?, ?, ?, and ?.
2See ? and ? for more recent overviews.
3See ?, ?, ? and ? ?, ?, ?, ?. There are also papers that approach this puzzle by combining behavioral

and more traditional factors, such as ? who explain the hump-shaped wages with rule-of-thumb consumers
in the economy.
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under which the consumption profile is consistent with the empirical evidence. In a nutshell,

whether a hump-shaped consumption profile can occur will depend on precisely how the

discount function deviates from an exponential discount function. We find that present bias

is a necessary but not sufficient condition for the lifecycle consumption profile to be hump-

shaped. Further, we use this general setup to investigate the conditions under which all

of the different selves prefer the commitment path of consumption (the plan established in

period zero) to the realized path (the actual consumption decisions). That is to say the

commitment path Pareto dominates the realized path.

Present bias, or as ? called it present focus,4 is a form of time-inconsistency in which

individuals are more impatient in trade-offs between the present and the immediate future

as compared to trade-offs between equivalent intervals of time in the more distant future.

Individuals acting under this bias, who might have been inclined to postpone a future payoff

when the options for when to take it were all in the future, are more inclined to take it at

the first opportunity as the opportunity gets closer to the present.5 Such a change is referred

to as a preference reversal. Note that with exponential discounting, the concept of time can

be assumed to be either absolute time, calendar time, or even waiting time, i.e. the time

to consumption. As ? showed, the equivalence of these three temporal interpretations is

a consequence of the exponential function not exhibiting preference reversals. In contrast,

for a nonexponential discount function that exhibits present bias, we must interpret the

“time” that parameterizes the function as the delay or waiting time until we experience the

consumption from the present moment.

In this paper, we propose a general representation of a discount function in the form of

Dt = Dt
1(1+εt) for t = 1, . . . , T , where εt is the extra weight (compared to the exponential

discounting case) that we put on the discount factor t periods in the future, and T + 1 is the

life span. We call εt the future weighting factor. All forms of discount function, including

the nonexponential ones, can be written as a specific case of this general function by finding

the corresponding εt. An advantage of this novel approach is the opportunity it provides to

understand the driving force behind the consumption hump. Using this framework, we find

that the shape of the consumption profile at a given age depends on the dynamics of the

future weighting factors at all delays within the remaining time horizon of the household.

4? use the term present focus, rather than the more common term present bias, because they believe the
word bias implies a prejudgment that the behavior is a mistake, which is not true in their view.

5Present bias, which is viewed as a form of misoptimization that accounts for a range of behavioral
“mistakes,” e.g. undersaving for retirement, has yielded a large literature that emphasizes the potential for
policies like forced pensions or retirement saving subsidies to protect against or correct such mistakes (for a
survey on present bias see ?)
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Working in a lifecycle model where households naive about their time-inconsistent pref-

erences repeatedly optimize a logarithmic utility function, we derive conditions on the future

weighting factor such that the log consumption profile is locally concave since a hump-shaped

consumption profile will have to be locally concave at the peak of the hump. In order for the

log consumption profile to be concave at a given point in the lifecycle, the future weighting

factor between that point and the end of the life span must be greater on average than the

weighting factors at shorter delays, as only these will be relevant going forward. This trans-

lates to the discount function decaying at a slower rate than an exponential function over

the remaining life span. It is, however, a stronger condition than a present bias, so present

bias alone is not strong enough to guarantee a hump-shaped consumption profile.

In formal terms, suppose that intertemporal preferences from the perspective of period t

can be represented by Ut =
∑T

s=tDs−tus, where us is the instantaneous utility experienced

in period s and Dx reflects the discounting associated with a delay of x ∈ {0, 1, 2, ...}. A

common example in which the concept of present bias is readily discernible is the β-δ or

“quasihyperbolic” functional form

Dx =

1 if x = 0

βδx if x > 0.

If β = 1, this reduces to an exponential discounting function, in which case the optimal plan

at t = 0 will remain the optimal plan throughout the lifecycle. For β ∈ (0, 1), the utility

from consumption at all periods after the present are discounted by the factor β, and the

difference 1 − β is a measure of present bias. The optimal plan at t = 0 will differ from

the optimal plan later in life as the household will continually seek to advance consumption

relative to what she originally planned. Conversely, if β > 1, the utility from consumption

at all future periods would be magnified by the factor β, and β − 1 can be characterized as

a measure of “future bias”.

While the quasihyperbolic case only covers a measure-zero subset of the space of all pos-

sible discounting functions, because of their simplicity quasihyperbolic discount functions

are often used as a proxy for other nonexponential discount functions. Indeed, the terminol-

ogy of quasihyperbolic derives from this usage as an approximation to hyperbolic discount

functions. If β < 1, the quasihyperbolic discount function will share with hyperbolic dis-

count functions the property that the lifecycle profile of log consumption is concave. These

discount functions also share another property to be further explained below: the household

at most ages would prefer the consumption profile it would get if it could commit to its
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t = 0 plan to what it gets in equilibrium after accounting for its changing intertemporal

preferences. On the other hand, a future-biased quasihyperbolic function with β > 1 will

yield log consumption profiles that are convex, and the household would usually prefer the

consumption profile it actually gets to what it would get if it could commit to its initial plan.

However, as we demonstrate in this paper, the language of “present” and “future” bias

are not reliable predictors of these properties. A convex log consumption profile does not

always arise in association with discount functions that one would naturally think of as

future-biased. For example, a pure myopic discount function is a discount function that

vanishes for delays beyond some horizon. Households with such a discount function do not

care about consumption in the future beyond that horizon. Nevertheless, myopia yields

properties consistent with a future-biased quasihyperbolic discount function rather than

properties consistent with a present-biased quasihyperbolic discount function.6

Our approach for exploring the driving force behind the shape of the consumption pro-

file begins with an exponential discount function, for which we know there is no time-

inconsistency and the log consumption profile will be linear. Measuring the deviation from

an exponential discount factor in terms of future weighting factors provides a straightforward

way of understanding the origin of a present bias, which comes from having all εt be positive

and strictly increasing for t > 1, or a future bias, which comes from having all εt be negative

and strictly decreasing for t > 1.7 A present bias is a necessary, albeit not sufficient, condi-

tion to have a concave log consumption profile. Likewise, a future bias will be a necessary

condition to have a convex log consumption profile.

Positive future weights mean that the discount function will be higher than an exponential

discount function as the delay time increases and are necessary for a discount function to

exhibit present bias everywhere. Negative future weights mean the opposite and likewise are

normally associated with future bias. In the case of a myopic discounting function the εt

will all be −1 for sufficiently high t, and this will exhibit both present and future bias at

different delays. The upshot is that a myopic discount function will tend to behave more like

a future-biased quasihyperbolic discount function since they both put less weight on future

consumption relative to an exponential discount function.

Another issue related to present and future bias that has been the focus of a relatively

recent literature pertains to welfare analysis. Since an individual with time-inconsistent

preferences, whether present- or future-biased, will choose a consumption profile that depends

6A myopic discount function actually exhibits both present and future bias, depending on the time
horizon.

7For the case of a future bias we also need the additional requirement that εt > −1.
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on the time of the choosing, it is not obvious which of these consumption profiles or the

preferences at what period of life should be the reference point for welfare comparison. A

common solution to this problem in the literature is to use the preferences of the initial self

to evaluate welfare (see for example ?, ?, ?, ?, ?, ?, ? among many others). In fact, ? show

that commitment to the time-zero consumption plan can improve the objective function for

all selves if the number of selves exceeds a certain threshold which turned out to be quite

small in their setting.

Adding to this strand of literature, the other contribution of this paper is to specify

the conditions on future weighting factors under which the commitment path will Pareto

dominate the realized path in discrete time.8 There is a similarity between the conditions

for a concave log consumption profile and the conditions for Pareto dominance of the com-

mitment path. We will exploit this similarity to strengthen the conditions for a concave log

consumption profile to obtain sufficient conditions for Pareto dominance of the commitment

path that are relatively easy to verify.

It is worth mentioning that in this paper we model the household’s choices in discrete

time. A companion paper, ?, addresses the same issues in continuous time. We obtain anal-

ogous results in the two papers, but, aside from the obvious advantages that the majority

of economists are most comfortable working in discrete time and that economic data accu-

mulates intermittently rather than continuously, another advantage of working in discrete

time is that the discount function can be fully specified in terms of a finite number of future

weighting factors. In the case of a four-period model, for which there are two future weight-

ing factors, we can graph where in the parameter space the commitment path will Pareto

dominate the realized path.

This paper is organized in the following way. Section 2 describes the model environment

including the general format for the discount function. Section 3 develops the condition on

the discount function for a concave or convex log consumption profile. Section 4 explores the

condition on the discount function under which commitment to the initial plan would almost

Pareto dominate the realized plan and investigate the relationship between the concavity

condition and Pareto Dominance condition, and finally, section 5 concludes.

8We only compare the preferences of the households’ various selves regarding the commitment path and
the realized path. We do not make any claims regarding Pareto efficiency as in ?, i.e. we do not compare
how the various selves value these two paths relative to other feasible consumption paths.
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2 Model environment

We focus on a finite-horizon life-cycle model in which households live for T + 1 periods.

The household earns income yt ≥ 0 at age t for t = 0, ..., T , which can be consumed ct or

saved as kt+1 at a fixed gross interest rate R ≥ 0. 9

2.1 Household optimization problem

At time t, a household with existing saving kt maximizes

Ut =
T∑
s=t

Ds−t ln cs|t

subject to

cs|t + ks+1|t = ys +Rks|t, s = t, . . . , T,

where Dt ≥ 0 is the discount function, and cs|t and ks+1|t are consumption and saving at

period s as planned in period t.10 We will normalize D0 = 1 and will also assume that D1 > 0.

The latter condition ensures that it will never be optimal for the household to consume all of

its remaining wealth in the present period, which would leave the future selves with utility

of −∞. Note that the household will solve this problem with kt|t = kt and kT+1|t = 0. To

simplify notation, we will assume the household begins with k0 = 0.11

Let us define

ht =
T∑
s=t

ys
Rs−t , (1)

9It is worth mentioning that similar to ?, in this paper we use the “choice-based” methodology which
compares the solutions of dynamic programs with different decision dates. It is the methodology used
originally by Strotz (1956), and now standard in behavioral macroeconomics, since the pioneering work of ?,
?, ?. It is “choice based” because it not only uses a utility function that represents the preference relation,
but also the budgetary constraints that the decision maker faces.

10The results are not qualitatively different for other CRRA utility functions, but they are more compli-
cated so we only consider the logarithmic case. In solving the model we will proceed as though the household
is naive about its time-inconsistency and does not know it will revise its plans as its preferences change.
We could alternatively assume that the household is sophisticated about its time-inconsistency. However,
with logarithmic period utility, the realized path (and the commitment path in Section 4) will be the same
under both assumptions, so there is no loss of generality between naivete and sophistication in the results
documented here. For more discussion see ?.

11Our results easily generalize if the household is endowed with savings or debt at birth.
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which represents the present value of the income stream from period t onward. Note that

ht = yt +
T∑

s=t+1

ys
Rs−t = yt +

ht+1

R
(2)

for t < T . We can combine the period budget constraints from t to T into a lifetime budget

constraint as of t:
T∑
s=t

cs|t + ks+1|t

Rs−t =
T∑
s=t

ys +Rks|t
Rs−t .

Using (1) and (2), this simplifies to

T∑
s=t

cs|t
Rs−t = ht +Rkt (3)

The Lagrangian of the household problem at t can then be written as

Lt =
T∑
s=t

[
Ds−t ln cs|t −

λtcs|t
Rs−t

]
+ λt[ht +Rkt]. (4)

Therefore, the first order condition (FOC) with respect to consumption will be

∂Lt
∂cs|t

=
Ds−t

cs|t
− λt
Rs−t = 0. (5)

The initial consumption plan cs|0 that is determined at t = 0, the first period of life, will

be referred to hereafter as the commitment path. Note, however, that unless the discount

function is exponential the household will only follow the initial plan at t = 0. Indeed,

at each period t of life, the household will choose a new plan cs|t, but only the choice of

consumption at t, ct = ct|t, will adhere to this plan. As the household progresses from period

to period, its preferences will unexpectedly change since we are assuming that the household

is naive about the change in its future preferences. When it gets to t + 1, it will then have

saving kt+1 = kt+1|t, but it will solve (4) anew, updated to t+ 1. The resulting consumption

profile ct, determined at each period t, will be referred to as the realized path.

While the FOC (5) for t = 0 governs the whole commitment path for consumption cs|0

from s = 0, . . . , T , along the realized path only the FOC with s = t will actually matter.
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This simplifies to
Dt−t

ct|t
− λt
Rt−t = 0, (6)

so we have

λt =
1

ct

since ct = ct|t and D0 = 1. The future plan cs|t at t is only relevant to the extent that it

determines the Lagrange multiplier λt. Generalizing (5), we obtain

cs|t =
Ds−tR

s−t

λt
= Ds−tR

s−tct.

Inserting these into the lifetime budget constraint (3), we get

T∑
s=t

Ds−tR
s−tct

Rs−t = ht +Rkt,

which reduces to

ct =
ht +Rkt∑T
s=tDs−t

. (7)

Hence, on the realized path, the budget constraint on period t can be written as

kt+1 = kt+1|t = yt +Rkt − ct = yt +Rkt −
ht +Rkt∑T
s=tDs−t

. (8)

We can use this to calculate an effective Euler equation along the realized path. Combining

(2) and (8), we get,

ht+1 +Rkt+1 = R

(
ht+1

R
+ yt +Rkt −

ht +Rkt∑T
s=tDs−t

)

= R

(
ht +Rkt −

ht +Rkt∑T
s=tDs−t

)

= R

(∑T
s′=t+1 Ds′−t∑T
s=tDs−t

)
(ht +Rkt).
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Updating (7) to t+ 1, consumption at t+ 1 is

ct+1 = R

(∑T
s′=t+1Ds′−t∑T
s=tDs−t

)
ht +Rkt∑T
s=t+1 Ds−t−1

Applying (7) again in its original form, the effective Euler equation realized by the household

for a general discounting function Dt with log utility is

ct+1 = R

∑T
s′=t+1 Ds′−t∑T
s=t+1Ds−t−1

ct. (9)

As mentioned above, since D1 > 0, ct+1 will be strictly positive.

In the special case of an exponential discount function Dt = δt, the ratio

Dt =

∑T
s′=t+1Ds′−t∑T
s=t+1 Ds−t−1

simplifies to the constant δ, and we get back the familiar Euler equation ct+1 = δRct. More

generally, though, for a nonexponential discount function, the inverse ratio D−1
t measures

the gross rate of change in the sum of the discount functions relevant at periods t+1 to T as

the household moves from t to t+1. That is to say the change from the sum D1 + · · ·+DT−t

applicable at t to the sum 1 + · · · + DT−t−1 applicable at t + 1. The richer consumption

dynamics that can be obtained in equilibrium with nonexponential discounting functions

stems entirely from the deviation of the Dt from a constant, which will depend on how the

discount function Dt deviates from an exponential function.

2.2 Future Weighting Discount Function

Given a discount function Dt ≥ 0 for t = 0, ..., T , we define the “future weighting factor”

εt via

Dt = Dt
1(1 + εt), (10)

where D1 is the discount factor for one period ahead. This future weighting factor basically

captures the extra (or diminished, if negative) weight that we put on the discounting t

periods in the future. Since we normalize D0 = 1, by definition we will have ε0 = ε1 = 0.

Note that this general form of discounting function can accommodate the standard geometric

discounter, for which Dt = δt, quasi-hyperbolic agents, for whom Dt = βδt where β < 1 (?),
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future-biased agents for whom Dt = βδt with β > 1; and the immediate successor agents,

for whom D1 = δ and D2 = D3 = · · · = 0 (see, ?, ? and ?). For example, we can represent

a quasihyperbolic discount function by setting εt = β1−t − 1;

Dt = βδt

for t > 0 with D0 = 1. Since

D1 = βδ,

εt can be calculated as
Dt

Dt
1

=
βδt

βtδt
= β1−t = 1 + εt.

Hence

εt = β1−t − 1. (11)

Likewise, for a myopic discounting function that vanishes for t ≥ t∗, we have εt = −1 for

t ≥ t∗.

Note that if εt = 0 for all t, the discount function will be exponential. Thus we can think

of the future weighting factor, εt, as the parameter that measures the discount function’s

deviation from an exponential at the delay t. If εt > 0, the discount factor of t periods

in the future will be higher than an exponential discount factor. This means utility from

consumption t periods in the future will be weighted more heavily than it would be under

an exponential discount function. Conversely, with εt < 0 the weight on utility consumption

t periods in the future will be lower relative to an exponential discount function.12

To have a better understanding of the role of εt in determining consumption behavior,

figure 2 compares the consumption profile under the commitment path and the realized

path for a ten period model, T = 10. We consider two cases to demonstrate the role of an

individual εt. First, we have a discount function for which εt is zero for all t except t = 2.

Second, we have a discount function for which εt is zero for all t except t = 8.

In both plots, the blue dashed line shows the commitment path and the red solid line

shows the realized path. In figure 1a, we see a spike in period two along the commitment

path simply because ε2 > 0 means that the household initially puts a higher weight on the

utility from consuming two periods ahead compared to all other future periods. Hence, the

spike at t = 2. Likewise, looking at figure 1b in which ε8 > 0, the spike in the commitment

12To be very precise, as we have defined the future weighting factor, we are talking about a departure from
exponential discounting at the rate used between period 0 and 1. In discrete time, it is natural to think of
the deviation of Dt from Dt

1, and this will yield some helpful simplifications.
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Figure 1: consumption profile, commitment path and realized path

eps_2_r.pdf

a . only ε2 > 0

eps_8_r.pdf

b . only ε8 > 0

Note: on both graphs the horizontal axis is time and vertical access is the consumption level at
each period.

path is at t = 8.

The effect of εt on the realized path is much more subtle than for the commitment path.

With ε2 > 0, shown in figure 1a, the household continually plans to have high consumption

two periods ahead, as happens at t = 2 on the commitment path. However, with each new

period, she reoptimizes and pushes forward when she intends to have high consumption.

This trend continues until the household arrives at period nine of her lifetime, at which

point there no longer is a period two periods ahead. Consequently, the realized consumption

path is quite smooth, as it would be with exponential discounting, for t < 9. She does

not realize this intended high consumption two periods ahead until she can no longer defer

this consumption. From this point, all future periods are discounted with the same rate.

Consumption jumps up in these last two periods as she finally consumes the saving she

accumulated to finance the planned extra consumption two periods ahead.

The same intuition applies to figure 1b in which ε8 > 0. There, the future period with

a higher discounting factor disappears after the second period. That is the reason why the

realized consumption plan for t ≥ 3 shifts upward. The high ε8 disappears from her calculus

once there no longer is a period eight periods ahead within her remaining time horizon.
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Consequently, she behaves like an exponential discounter thereafter, smoothing out over all

the periods with t ≥ 3 the extra consumption that she had previously intended, at t = 2, to

save entirely for the last period.

The consumption-hump literature has traditionally characterized the effect of the dis-

count function on the shape of the (log) consumption profile in terms of present bias. By

examining present and future bias in terms of future weighting factors, we can also get some

new insight into the origin of these concepts. A discount function exhibits present bias at

t > 0 if it gives rise to the following type of preference reversal. Suppose for some allocation

{ct}Tt=0, there exists ξt > 0 and ξt+1 ∈ (0, ct+1) such that the household would prefer at

time 0 the original allocation over a forward-shifted allocation with ct increased by ξt and

ct+1 decreased by ξt+1. However, when the household gets to time t, it in stead prefers the

forward-shifted allocation over the original allocation. Thus the household would prefer not

to shift consumption forward when the possibility of doing so is in the future, but it would

opt to make that shift in the present. This is usually interpreted as the household putting an

extra preference on consumption in the immediate present. Future bias at t > 0 is defined

similarly except the preference reversal goes the other way. The household would prefer the

forward-shifted allocation over the original allocation when t is in the future, and prefers

the original allocation when it reaches time t. We say a discount function is present-biased

(future-biased) if it exhibits present (future) bias at all t > 0.

Assuming Ds > 0 for all s, we can express the condition for preference reversals in terms

of the perceived marginal rate of substitution between consumption at t and consumption

at t+ 1 as of time s ≤ t:

ms(t) =
Dt+1−su

′(ct+1)

Dt−su′(ct)
.

The household will prefer the forward-shifted allocation at time 0 and the original allocation

at t if

Dtu
′(ct)ξt −Dt+1u

′(ct+1)ξt+1 < 0 < u′(ct)ξt −D1u
′(ct+1)ξt+1,

which we can rearrange as

m0(t) =
D1u

′(ct+1)

u′(ct)
<

ξt
ξt+1

<
Dt+1u

′(ct+1)

Dtu′(ct)
= mt(t).

The household will have a present bias at t if m0(t) < mt(t) since we can then find ξt and
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ξt+1 such that ξt
ξt+1
∈ (m0(t),mt(t)). Since ε1 = 0 by definition, this reduces to the condition

1 <
1 + εt+1

1 + εt
,

or equivalently

εt < εt+1.

It will be helpful in the following to define the future weighting growth factor

φt =
1 + εt+1

1 + εt
(12)

at t, assuming εt > −1, since many of our results depend on such ratios. Note that we have

the theorem that φt T 1 if and only if εt+1 T εt.

Thus a present-biased discount function will have strictly increasing and positive (for

t > 2) future weighting factors. In the φt notation, a present-biased discount function will

have φt > 1 for t > 2. Conversely, a strictly positive and future-biased discount function

will have strictly decreasing and negative (for t > 2) future weighting factors.13 To put this

in more graphical terms, a present-biased discount function will lie above the exponential

function defined by the discounting between time delay 0 and time delay 1, and the divergence

between the curves must increase with the time delay. A future-biased discount function will

lie below the same exponential function, and the divergence between the curves must also

increase (while avoiding zero as we discuss below).

Note that a myopic discount function that is zero for t greater than equal to some t∗ > 1

does not fit nicely into the categories of a present- or future-biased discount function because

it does not satisfy the caveat that the Dt are all positive, which is necessary for the marginal

rate of substitution between ct and ct+1 to be defined. There will be a future bias at t∗ − 1

since at time zero the household would prefer not to consume anything at t∗, but its (t∗−1)-

utility is only defined if ct∗ > 0. On the other hand, there will be a weak present bias at t ≥ t∗

since at time zero the household will be indifferent between how it allocates consumption

between t and t+ 1. However, at time t the household will prefer to have more consumption

at t.

13A related property of discount functions is increasing patience (?). Since Prelec defines this concept in
continuous time, we refer the reader to our companion paper in continuous time, ?, for an understanding of
how it translates into a property of the future weighting factors.
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3 Curvature of the log consumption profile

Empirically, lifecycle profiles of household consumption are hump-shaped, and time-

inconsistency is often invoked as an explanation for this phenomenon. As we discussed

in the previous section, εt is the parameter that controls the discounting weight of future pe-

riods. In this section, we explore how the value of the future weighting factor, εt, determines

the curvature of the log consumption profile of the household. More precisely, we establish a

necessary condition on εt under which the log consumption profile would be locally concave

(convex) at age T − t. This in turn is a necessary condition for the consumption profile to

have a local maximum at age T − t. 14

As a first step, we will rewrite the Euler equation in terms of the future weighting discount

function. Replacing the general form of discounting function Dt in the household’s Euler

equation (9) with the form involving the future weighting discounting function (10) gives us

ct+1 = D1R

∑T
s′=t+1 D

s′
1 (1 + εs′−t)∑T

s=t+1 D
s
1(1 + εs−t−1)

ct. (13)

In this still exact form, it is more apparent that the Euler equation reduces to the usual

ct+1 = D1Rct when we have an exponential discounting function and ε2 = ε3 = · · · = εT = 0.

Alternatively, by setting z = s− t, we can rewrite this exact Euler equation (13) as

ct+1

ct
= D1R

∑T−t
z′=1D

z′
1 (1 + εz′)∑T−t

z=1 D
z
1(1 + εz−1)

. (14)

As we will often do in the following, it is helpful to consider how this equation simplifies in

the limit of small future weighting factors. Since the zeroth-order terms that do not involve

the εz are the same in the numerator and the denominator of (14), we can rearrange the

equation to obtain

ct+1

ct
= D1R

1 +
∑T−t
z′=1

Dz
′

1 εz′∑T−t
s′=1

Ds
′

1

1 +
∑T−t
z=1 D

z
1εz−1∑T−t

s=1 D
s
1

.

14If the consumption profile has a local maximum at tast, it will, of course, also be necessary to have
ctast

ctast−1
> 1 >

ctast+1

ctast
. However, the main hurdle is constructing a model where the growth rate of con-

sumption changes. Adjusting the model so we quantitatively get growth rates both above and below 1 is a
matter of calibration. In a partial-equilibrium environment where R is a free parameter, this is trivial. In
a general-equilibrium environment, it is more challenging but still less of an issue than getting a concave
profile in the first place.
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We define the difference operator ∆ such that for a time series xt we have

∆xt = xt+1 − xt. (15)

To first order in the ε, the Euler equation then approximates to

ct+1

ct
= D1R

[
1 +

∑T−t−1
z=0 Dz

1∆εz∑T−t−1
s=0 Ds

1

]
+O(ε2), (16)

where O(g(x)) represents an unspecified function smaller than Mg(x) for some M > 0 in

the limit as x→ 0.

Eq. (16) shows that deviations of the Euler equation from the canonical Euler equation

ct+1 = D1Rct for an exponential discounting function arise because of changes in the future

weighting as the delay changes by one period. The effect of a change in future weighting s

periods in the future is discounted by Ds
1, so a change in the future weighting at short delays

will have a bigger effect than a change at long delays.

We will now focus on the log consumption profile, which will be concave if log( ct+1

ct
)

decreases with t. We can take logs of both sides of equation (14) and difference it to obtain

∆ ln ct = ln(D1R) + ln

(∑T−t
s′=1D

s′
1 (1 + εs′)∑T−t

s=1 D
s
1(1 + εs−1)

)
. (17)

Similarly, we can define the second-order difference

∆2 ln ct = ln

( ∑T−t−1
z′=1 Dz′

1 (1 + εz′)∑T−t−1
z=1 Dz

1(1 + εz−1)

)
− ln

(∑T−t
s′=1D

s′
1 (1 + εs′)∑T−t

s=1 D
s
1(1 + εs−1)

)
,

which simplifies to

∆2 ln ct = ln

(∑T−t−1
z′=1 Dz′

1 (1 + εz′)∑T−t
s′=1D

s′
1 (1 + εs′)

∑T−t
s=1 D

s
1(1 + εs−1)∑T−t−1

z=1 Dz
1(1 + εz−1)

)
. (18)

The log consumption profile will be concave iff ∆2 ln ct ≤ 0 for t = 0, ..., T − 2. If

∆2 ln ct < 0 for all t = 0, ..., T − 2, then the log consumption profile will be strictly concave.

The reverse inequalities will yield convex and strictly convex profiles.15

15Unlike in continuous time, for the log consumption profile to be strictly concave (convex) at t + 1 we
must have ∆2 ln ct be negative (positive). If the second difference vanishes, the profile must be locally linear.
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Notice that the lnD1R in (17) vanishes from (18). Absent the future weighting factors

in (18), the argument of the logarithm is clearly one, so all of the surviving terms on the

right-hand side are of first or higher order in the εt, corroborating again that the log con-

sumption profile with an exponential discounting function is exactly linear. Any deviation

from linearity is driven by the future weighting factors.

Consequently, if the log consumption is concave at t+ 1, we must have∑T−t−1
z′=1 Dz′

1 (1 + εz′)∑T−t
s′=1D

s′
1 (1 + εs′)

∑T−t
s=1 D

s
1(1 + εs−1)∑T−t−1

z=1 Dz
1(1 + εz−1)

≤ 1, (19)

which can be simplified to16

εT−t ≥
∑T−t−2

s′=0 Ds′
1 (1 + εs′+1)∑T−t−2

s=0 Ds
1(1 + εs)

(1 + εT−t−1)− 1. (20)

Note that all of the future weighting factors on the right-hand side are at delays shorter than

T − t. Thus the exact condition for concavity at t+ 1 is a lower bound on εT−t that depends

on future weighting factors at shorter delays.

If εT−t−1 = −1, so DT−t−1 = 0, there are two possibilities in terms of the shape of the log

consumption profile at t+1. These depend on εT−t. If εT−t = −1 too, then ∆ ln ct = ∆ ln ct+1,

and the log consumption profile will be linear (and thus both weakly concave and weakly

convex) in the vicinity of t + 1. If, on the other hand, εT−t > −1, ∆ ln ct > ∆ ln ct+1, and

the log consumption profile will be strictly concave in the vicinity of t+ 1.

Let us define

φt =

∑t
s=0Dsφs∑t
s′=0Ds′

. (21)

Then we can conveniently express the following result.

Proposition 1. If εs > −1 for all s = 0, . . . , T − t − 1, the log consumption profile will be

strictly concave locally at t+ 1 iff

φT−t−1 > φT−t−2. (22)

The profile will be strictly convex locally if the inequality is reversed.

This follows from (20) using (12). Note that φt Q φt−1 iff φt Q φt. So an equivalent

condition for strict concavity at t is that φT−t > φT−t.

16See appendix A for details on this calculation.
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So the concavity condition at t+1 is that φT−t−1 is bigger than a weighted average of the

φs for s = 0, ..., T − t− 2, where the weights are the Ds. That is to say, the log consumption

profile will be concave when there are s periods remaining if and only if the future weighting

growth factor at s is bigger than a weighted average of the future weighting growth factor

at shorter delays.

As we showed in the previous section, a present-biased discount function will have φt > 1

for all t > 0. Given the assumption of ε0 = ε1 = 0, we have φ1 = 1. Therefore, local

concavity imposes a stronger condition on the shape of consumption profile compared to

present bias.

Since a weighted average of a heterogeneous set must be less than the maximum in the

set and greater than the minimum in the set, it follows immediately from Proposition 1 that

if the φt are strictly increasing (decreasing) then the log consumption profile will be strictly

concave (convex). Moreover, if the φt are increasing with φ1 > 1, the log consumption profile

will be strictly concave. Likewise, if the φt are decreasing with φ1 < 1, the log consumption

profile will be strictly convex.

Proposition 2. For the entire log consumption profile to be strictly concave (convex), the

∆εs from s = 1, . . . , T − 1 must all be positive (negative) and the φs must all be greater

(less) than the weighted average of previous φs where the weight is the discount factors.

Consequently, present bias is a necessary and not sufficient condition for the log consumption

profile to be strictly concave.

This proposition can be proved by induction. Suppose the φi > 1 for s = 1, . . . , s − 1.

Then (22) implies φs > 1, and εs+1 = εs + ∆εs > εs > 0. Note also that each successive

iteration of (22) is the necessary condition for the log consumption profile to be concave one

period earlier. Thus the condition that

εT >
1

D1

∑T−1
s′=1D

s′
1 (1 + εs′)∑T−2

s=0 D
s
1(1 + εs)

(1 + εT−1)− 1.

is the condition that the log consumption profile is strictly concave between t = 0 and

t = 2. Iterating forward in time, each log consumption growth ratio will depend on one more

difference ∆εs than the ensuing log consumption growth ratio, so ∆εs > 0, or equivalently

εs+1 > εs will be necessary to have the log consumption growth ratio decrease with time.

One way to think about this result is that what often gets referred to as present bias is

really a case of young households putting extra weight on consumption in the distant future.

However, consumption in these future periods gradually matters less to the household as the
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future gets closer to the present. Therefore, the εt must grow with t because that implies

the extra weight associated with a specific age gets smaller as we approach that age and the

delay time gets shorter.

4 Pareto dominance of the commitment path

In previous sections, we described the household problem with a discounting function that

depends on the time to consumption from the present rather than the absolute time when the

consumption occurs. Such a household has time-inconsistent preferences and therefore, as

? noted, the marginal rate of substitution between consumption at different times depends

on when the household is evaluating the utility from these consumptions. Consequently,

the household at different ages will value consumption plans differently. This multiplicity of

selves can substantially complicate welfare analysis.

A common solution to tackle this complication in the literature is to use the preferences of

the initial self to evaluate welfare. See, for example, (??), ?, and (???). This approach does

have its criticisms however. ? states that there is “no normative foundation” for equating

welfare with time-zero preferences.

A more recent literature explores conditions that can be imposed on the discount func-

tion under which committing to the initial plan of the time-zero self improves the welfare

of all selves over the life cycle as compared to what they would actually obtain over the

lifecycle, providing a justification for singling out the preferences of the time-zero self. ?

show that with quasihyperbolic discounting commitment to the time-zero consumption plan

can improve the objective function for all selves if the number of selves exceeds a certain

threshold which turned out to be quite small in their setting.

In this section, we use our setup to explore conditions on a general discount function in

discrete time under which committing to the initial plan will Pareto dominate the realized

plan. In a nutshell, exploiting results from the previous section, we find that when the log

consumption profile is strictly concave, the difference in welfare between the commitment

path and the realized path for each self decomposes into two terms of unambiguous but

opposite sign. We can control the magnitude of the contrary term by imposing an upper

bound on the future weighting factor at the longest delay. Consequently, we can obtain

sufficient conditions for Pareto dominance that are applicable when the log consumption

profile is strictly concave, which is easy to assess visually and, with log utility, depends only

on the structure of the discount function. Note, however, that these conditions are difficult
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to satisfy for small T and impossible to satisfy for T = 2.

Our results in this section suggest that one does need to be careful when performing

welfare analysis with time-inconsistent preferences. Absent other information, it will not

be obvious that the consumption path chosen by the initial self will necessarily be the best

choice to serve as the benchmark for the purpose of welfare exercises. On the contrary, for

most of the parameter space of possible discount functions, neither the commitment path

nor the realized path will Pareto dominate the other.

As a starting point, we derive an expression for the difference between realized utility

and commitment utility. The realized utility as of time τ is simply the realized value of

the household’s objective function at time τ , which we have already dealt with in previous

sections:

U∗τ =
T∑
t=τ

Dt−τ ln(ct).

In contrast, the commitment utility at time τ is

U c
τ =

T∑
t=τ

Dt−τ ln(ct|0), (23)

which is what you obtain if you insert the original consumption path as of time 0 into the

objective function at time τ . What concerns us most is ∆Uτ which is the difference in utility

between the realized plan and the original plan at time τ :

∆Uτ = U∗τ − U c
τ =

T∑
t=τ

Dt−τ ln

(
ct
ct|0

)
. (24)

If ∆Uτ > 0, then following the realized consumption plan provides the household at age τ

with a higher utility compared to the initial plan. Conversely, if ∆Uτ < 0, then committing

to the initial plan is optimal for the household at age τ . By definition, the commitment path

must maximize lifetime utility at t = 0, so we must have ∆U0 ≤ 0. We will say that the

commitment path Pareto dominates the realized path if, for all τ = 0, . . . , T , ∆Uτ ≤ 0 and if,

for some s ∈ 0, . . . , T , ∆Us < 0. This Pareto dominance provides a compelling justification

for helping the household commit to the initial path without having the policy maker impose

her norms about which selves matter more on the household.

In what follows, we will also use the term “almost Pareto dominates”, which we define

as follows. If ∆Uτ ≤ 0 for all τ ∈ 2, . . . , T then the commitment path will almost Pareto
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dominates the realized path. Likewise, if ∆Uτ ≥ 0 for all τ ∈ 2, . . . , T then the realized

path almost Pareto dominate the commitment path17. The reason for introducing the term

”almost” is because what happens for the second self, i.e. t = 1 is somewhat different from

what happens for the later selves as we will demonstrate later.

First let us explore ∆Uτ for the exceptional case of a discount function that is not strictly

positive, including the case of a myopic discount function. Let t∗ = min{t ∈ {2, ..., T} :

Dt = 0}. Then referring to the commitment consumption rule, ct∗ = 0. This does not

cause anything pathological for U0 since Dt∗ ln(ct∗) = 0. However, Dt∗−1 ln(ct∗) = −∞, so

U c
τ = −∞ for τ = 1, . . . , t∗. In contrast, since we have assumed D1 > 0, the realized path of

consumption will be positive for all t, and U∗τ will be finite for all τ . Thus the commitment

path cannot Pareto dominate the realized path. In the myopic case where Dt = 0 for all

t ≥ t∗, the realized path will almost Pareto dominate the commitment path.

For the remainder of this section, we will assume the discount function is strictly positive,

so the εt > −1 for all t, and the φt are all defined.

We will begin by simplifying the expression for ∆Uτ . Note that for both paths, we have

ct = c0

t−1∏
s=0

cs+1

cs
, (25)

so we can rewrite (24) as

∆Uτ =
T∑
t=τ

t−1∑
s=0

Dt−τ

[
ln

(
cs+1

cs

)
− ln

(
cs+1|0

cs|0

)]
. (26)

This is convenient because we have previously specified the evolution of the realized path

in terms of the effective Euler equation (14). The initial plan ct|0, i.e. the consumption at

period t as determined at period 0, can be obtained from (6):

ct|0 = DtR
tc0 = Dt

1(1 + εt)R
tc0. (27)

Thus consumption growth from t to t+ 1 along the commitment path simplifies to

ct+1|0

ct|0
= D1R

1 + εt+1

1 + εt
. (28)

17Note that the realized path can almost Pareto dominate the commitment path, but it cannot Pareto
dominate the commitment path.

20



Combining these expressions, 14 and (28), for consumption growth along the two paths,

the difference in utility at age τ becomes

∆Uτ =
T∑
t=τ

t−1∑
s=0

Dt−τ

[
ln

( ∑T−s
z=1 D

z
1(1 + εz)∑T−s

z′=1 D
z′
1 (1 + εz′−1)

)
− ln

(
1 + εs+1

1 + εs

)]
, (29)

which we can rewrite as

∆Uτ =
T∑
t=τ

t−1∑
s=0

Dt−τ

[
ln

(∑T−s−1
z=0 Dz

1φz∑T−s−1
z′=0 Dz′

)
− lnφs

]
.

Using (21), this simplifies to

∆Uτ =
T∑
t=τ

t−1∑
s=0

Dt−τ ln

(
φT−s−1

φs

)
. (30)

The remainder of this section will ultimately explore to what extent the concavity con-

dition that we developed in the previous section can help us to determine the sign of (30).

Recall that the condition for strict concavity at t is that φT−t > φT−t. However, if the

log consumption profile is everywhere strictly concave that does not generally imply that

∆Uτ < 0 since the subscripts of φ and φ in (30) are different. The difference in the sub-

scripts arises from how the future weighting factors affect the two paths. The commitment

path is obtained by iterating (28), so ct|0 depends on φ1, . . . , φt−1. In contrast, the realized

consumption at t depends on the future weighting factors ε2, . . . , εT−t that still affect the

household’s problem at age t. Their combined effect is conveyed by φT−t instead of φt.

Nevertheless, for τ = T , i.e. the terminal period,

∆UT =
T−1∑
s=0

D0

[
lnφT−s−1 − lnφs

]
=

T−1∑
s=0

ln

(
φs
φs

)
.

Thus strict concavity of the log consumption profile does imply that ∆UT < 0. Likewise,

strict convexity implies that ∆UT > 0.

For τ < T , strict concavity of the log consumption profile is not sufficient to unambigu-

ously sign the whole sum in (30), but it is sufficient to unambiguously sign the individual

terms. We will exploit that result to establish the stronger conditions necessary to ensure
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that ∆Uτ for τ < T are also negative. By Proposition 2, strict concavity implies present

bias, so the φt and the φt, which are a weighted average of the φt, must be greater than or

equal to 1. This means the sign of each of the ∆Uτ for τ = 1, . . . , T − 1 is the result of

conflicting forces. As we will see, which sign will prevail is determined largely by εT , the

future weighting factor at the longest delay. We will first consider how the ∆Uτ depend on

εT in the general case. Later we will specialize to the case when the log consumption profile

is strictly concave.

For τ ≥ 1, ∆Uτ only depends on εT through its dependence on φT−1 and φT−1. We can

rewrite (30) as

∆Uτ =
T∑
t=τ

t−1∑
i=0

Dt−τ lnφT−t+i −
T∑
t=τ

t−1∑
i=0

Dt−τ lnφi. (31)

Note that the Dt−τ that appear in this equation will never depend on εT for τ > 0, and we

do not need to consider ∆U0 since it must, by definition, be nonpositive.

To differentiate (31) with respect to εT , it will be helpful to compute the partial deriva-

tives of the φt and φt. From (12), the former is

∂φt
∂εT

=
δt,T−1

1 + εT−1

, (32)

where δij is the Kronecher delta, equaling 1 when i and j are the same and 0 otherwise.

Likewise, the latter is, by (21),

∂φt
∂εT

=
1

1 + εT−1

DT−1δt,T−1∑T−1
s=0 Ds

. (33)

The corresponding derivatives of lnφt and lnφt are

∂ lnφt
∂εT

=
δt,T−1

1 + εT
(34)

and
∂ lnφt
∂εT

=
1

1 + εT−1

DT−1δt,T−1∑T−1
s=0 Dsφs

. (35)

All four of these partial derivatives are nonnegative. Since both terms in (31) include

contributions from φT−1 and φT−1 that are strictly positive, this means that the first term,

which accrues from the realized utility, is unambiguously positive while the second term,

which accrues from the subtraction of the commitment utility, is unambiguously negative.
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This property that ∂φt
∂εs

and ∂φt
∂εs

are nonnegative for all t = 1, . . . , T −1 is unique to s = T −1.

This elucidates the reason that εT is of special significance of all the future weighting factors.

An increase in εT will generate a spike in consumption at the end of life on the com-

mitment path that will add to the commitment utility of all the household’s selves. As we

discussed above, for the singular case of τ = T , this spike will unambiguously decrease ∆UT

since only cT matters for the welfare of the final self.18 The initial self will save more to

finance this spike in terminal consumption. However, the later selves will end up diverting

some of this additional saving to consumption at other ages. Thus an increase in εT will

increase cT |0 more than cT , resulting in a net decrease of ∆UT , but this is accomplished

by decreasing the ct|0 for t < T . This latter effect can make the ∆Uτ positive for τ < T ,

rendering ∆Uτ nonmonotonic.

Let us now focus on the case of τ < T . Partially differentiating (31) with respect to εT ,

∂∆Uτ
∂εT

=
1

1 + εT−1

T∑
t=τ

t−1∑
i=0

Dt−τ
DT−1δT−t+i,T−1∑T−1

s=0 Dsφs
− 1

1 + εT

T∑
t=τ

t−1∑
i=0

Dt−τδi,T−1

=
1

1 + εT−1

T∑
t=τ

Dt−τ
DT−1∑T−1
s=0 Dsφs

− DT−τ

1 + εT

=
T∑
t=τ

Dt−τ
DT−1

1∑T−1
i=0 D

i
1(1 + εi+1)

− DT−τ

1 + εT

= DT−τ
1

[∑T
t=τ D

t−1
1 (1 + εt−τ )∑T−1

i=0 D
i
1(1 + εi+1)

− 1 + εT−τ
1 + εT

]

= DT−τ
1

(1 + εT )
∑T

t=τ D
t−1
1 (1 + εt−τ )− (1 + εT−τ )

∑T−1
i=0 D

i
1(1 + εi+1)

(1 + εT )
∑T−1

i=0 D
i
1(1 + εi+1)

and finally, after cancelling like terms in the numerator, we obtain

∂∆Uτ
∂εT

= DT−τ
1

(1 + εT )
∑T−1

t=τ D
t−1
1 (1 + εt−τ )− (1 + εT−τ )

∑T−2
i=0 D

i
1(1 + εi+1)

(1 + εT )
∑T−1

i=0 D
i
1(1 + εi+1)

. (36)

Notice that εT only appears once, in the first term of the numerator. That is to say, the

numerator is linear in εT . Moreover, given our assumptions that D1 > 0 and the εt > −1,

both the whole denominator and the coefficient of εT in the numerator are positive.19 This

18This accounts for why strict concavity alone can guarantee that ∆UT < 0 since strict concavity imposes
a strictly positive upper bound on εT that depends on the other future weighting factors, which must also
be positive. This is a tighter bound on εT than what we need to get a negative ∆UT .

19For τ = T , the numerator does not depend on εT and with those assumptions is strictly negative. Thus
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yields our next result.

Proposition 3. For τ = 1, . . . , T − 1, the difference ∆Uτ of lifetime welfare between the

realized path and the commitment path is a U-shaped function of the future weighting factor

εT at the longest delay. The global minimum of ∆Uτ as a function of εT is

ετT ≡ D1−τ
1

∑T−2
i=0 Diφi∑T−τ−1
t=0 Dt

(1 + εT−τ )− 1. (37)

Thus ∆Uτ is a strictly decreasing function of εT for εT < ετT and ∆Uτ is strictly increasing

for εT > ετT .

This follows immediately from (36). The location of the global minimum is obtained by

solving for the εT that sets the numerator of (36) to zero. See Appendix B for details.

Since our objective is to characterize where the ∆Uτ are all negative, we focus on where

the Uτ bottom out for τ = 1, . . . , T − 1. A necessary condition for the commitment path

to Pareto dominate the realized path is that the future weighting factors must be chosen so

that εT is sufficiently close to ετT for all τ ∈ 1, . . . , T − 1.20

We can rewrite (37) as

1 + ετT
1 + εT−τ

= D1−τ
1

∑T−2
s=0 Ds∑T−τ−1

s′=0 Ds′
φT−2, (38)

so 1 + ετT is proportional to the weighted average φT−2 of the φ0, . . . , φT−1. If τ = 1, the

right-hand side is exactly φT−2. For τ = 2, . . . , T − 1, the right-hand side will be strictly

greater than φT−2 since the discount factors are all positive.

The different behavior of ετT for τ = 1 and τ > 1 has some interesting consequences in the

special case where all the future weighting factors εt for t < T vanish. In that case φT−2 = 1

and εT−τ = 0, so we have ε1
T = 0 < ετT for τ > 1. In this limit, ∆Uτ = 0 for all τ in the

limit as εT = 0 since in that limit the discount function is exactly exponential and there is

no time-inconsistency. Since the global minimum of ∆U1 is exactly zero, this implies that

∆U1 ≥ 0 with equality only when εT = 0. Thus the second self will always prefer the realized

path to the commitment path if ε2 = · · · = εT−1 = 0. In contrast, a later self at τ > 1 will

definitely prefer the commitment path to the realized path if εT ∈ (0, ετT ] and even for some

∆UT is strictly decreasing in εT .
20Additional conditions will be necessary to guarantee that ∆Uτ is in fact negative in the neighborhood

of this minimum.
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εT > ετT since ∆Uτ < 0 when εT = ετT . Nevertheless, the commitment path cannot Pareto

dominate the realized path if ε2 = · · · = εT−1 = 0.

The intuition behind what we explained above is that the second self will always prefer

the realized path to the commitment path in this case because there is time-inconsistency

between the preferences of the initial self and the later selves, but there is no inconsistency

between the preferences of the later selves. The initial self puts a different weight on cT

than an exponential discounter would, but the later selves are all exponential discounters.

Obviously, the second self must prefer the path that is optimal for her over the path that

is optimal for the initial self or there is no time-inconsistency. Since the third and later

selves have no reason to further alter the consumption path planned by the second self, the

optimal plan for the second self will be the realized path. Thus the second self must prefer

the realized path to the initial path.

Whether the third and later selves will also prefer the realized path to the initial path

depends on how the two paths deviate. If we decrease εT from zero while holding the other

future weights fixed at zero, the initial self will put less and less weight on the terminal

consumption, going to zero as εT → −1. Since the other selves will not put less weight on

cT , the initial path will become more and more objectionable as compared to the realized

path as εT gets more negative. This is true for the second self as well as for the later selves.

For the third and later selves, excepting the terminal self, what happens to ∆UT as εT

increases from zero correctly informs our intuition for small εT . The initial self puts more

weight on cT |0, and the welfare of all these selves depends on cT so that makes the initial path

more preferable as compared to the realized path. However, the increase in cT |0 does not

come without a cost. The household’s total wealth remains unchanged, so the initial self can

only increase cT |0 at the expense of reducing the initial allocation of consumption to earlier

ages. That does not matter for the terminal self, but it will matter for τ = 2, . . . , T − 1.

This is a second-order effect, so it is dominated by the effect of a high cT |0 for small εT , but

for large enough εT these selves will look upon the realized path more favorably. Indeed, for

these τ we can show that ∆Uτ will eventually turn positive as we keep increasing εT . This

leads us to the following proposition:

Proposition 4. For τ = 1, . . . , T − 1, for any given choice of ε2, . . . , εT−1, we have

lim
εT→∞

∆Uτ = lim
εT→−1

∆Uτ =∞. (39)

See Appendix C for the proof. Note that with εT−1 → −1, we have φT−1 = 0 and
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φT−1 > 0, while all of the other φt and φt remain positive. Therefore, the second equality

in (39) holds since all of the ∆Uτ for τ ≥ 1 depend on lnφT−1 with a positive coefficient in

(31).

As a consequence of Propositions 3 and 4, we conclude that to have ∆Uτ < 0 will

require εT to lie within a finite interval (Aτ , Bτ ) that depends on the other future weighting

factors and includes ετT . We do not have a simple characterization of the exact bounds on

this interval beyond what can be obtained by numerical solution of the equation ∆Uτ = 0.

Nevertheless, Proposition 1 implies that the log consumption profile will be strictly concave

if

εT > F = (1 + εT−1)φT−1 − 1. (40)

With a strictly concave log consumption profile, we can sign the individual terms of (31) and

thus obtain an upper bound Gτ on εT such that ∆Uτ < 0. In other words, (F,Gτ ) ⊆ (Aτ , Bτ ).

Thus F will be an upper bound on the lower bound Aτ , and Gτ will be a lower bound on

the upper bound Bτ .

However, we must emphasize that the interval (Aτ , Bτ ) could be empty. This can be

easily demonstrated for the case of T = 3, i.e. when the household lives for four periods.21

Since there are only two future weighting factors in this case, it is feasible to graph the

numerical solution of where all the ∆Uτ are negative. So, before we characterize bounds

on the bounds of the intervals, let us first see what we can learn when we can diagram the

whole parameter space with a two-dimensional graph.

In figure 2, we show for two calibrations of D1 graphs of a neighborhood of the origin in

which white pixels show pairs (ε3.ε2) for which the commitment path Pareto dominates the

realized path whereas the black pixels correspond to pairs where at least one self prefers the

realized path. In both cases we imagine a period is twenty years so a total life span is 80

years. In 2a, D1 = 0.44, or 0.96 in annual terms. In 2b, it is 1.42, or 1.02 in annual terms.

As we can see in figure 2, Pareto dominance of the commitment path holds over a larger

subset of the parameter space when D1 is 1.02 as opposed to 0.96. In both calibrations the

subset where the commitment path Pareto dominates the realized path lies entirely within

the first quadrant, where both ε2 and ε3 are positive. However when D1 is 1.02, the subset

radiates from the origin. When D1 is 0.96, Pareto dominance only occurs when ε2 and ε3

are both large and positive.

As one might expect given the previous discussion of what happens when ε2 = εT−1 = 0,

21When T = 2, ε2 is the only future weighting factor, so our previous argument that the second self must
prefer the realized path over the commitment path applies.
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Figure 2: Pixel plot of the combinations of ε2 and ε3 for which the commitment path Pareto
dominate the realized path

D1-96.pdf

a . for D1 = 0.96

D1-102.pdf

b . for D1 = 1.02

Note: on both graphs, the bright area shows the region that Pareto condition holds. We have
ε2 ∈ [−1, 10] on the y axis and ε3 ∈ [−1, 10] on the x axis.
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the condition that ∆U1 ≤ 0 is usually the tightest constraint on Pareto dominance. For

τ > 1, there must be discount functions in a neighborhood of the origin, i.e. where the

discount function is exponential, such that ∆Uτ < 0, but that need not be true for τ = 1 as

demonstrated by figure 2a.

Proposition 3 established that ∆U1 is minimized at εT = 0 when ε2 = · · · = εT−1 = 0,

so ∂∆U1

∂εT
= 0 at the origin. In fact, all of the first partial derivatives of ∆U1 vanish at the

origin. We state this observation in the next proposition:

Proposition 5. The gradient ∇∆U1 = 0 when ε2 = · · · = εT = 0.

The proof is in Appendix D. This is a consequence of the fact that the commitment and

realized plans are the same at t = 0 so c0 = c0|0. We have

D1∆U1 = D1

T∑
t=1

Dt−1 ln

(
ct
ct|0

)

= ln

(
c0

c0|0

)
+

T∑
t=1

Dt ln

(
ct
ct|0

)
+

T∑
t=1

(D1Dt−1 −Dt) ln

(
ct
ct|0

)

= ∆U0 +
T∑
t=1

(D1Dt−1 −Dt) ln

(
ct
ct|0

)
.

When the future weighting factors all vanish, both factors, (D1Dt−1−Dt) and ln
(

ct
ct|0

)
, of the

last term vanish at the origin so partial derivatives of this last term also vanish at the origin.

Consequently, the gradient of ∆U1 is proportional to the gradient of ∆U0. Since the initial

self must prefer the commitment path, ∆U0 must be maximized at the origin. Therefore,

its gradient must vanish, and the gradient of ∆U1 must also vanish. This intuition does not

extend to later τ because ln
(

cτ
cτ |0

)
for τ ≥ 1 only vanishes at the origin, so it has a nonzero

gradient. Thus we have that the story about whether the τ = 1 self prefers the initial path

or the realized path is different from the story for the later selves.

However, while the gradient of ∆U1 must vanish at the origin, ∆U1 differs from ∆U0

in that the origin is not a global maximum of ∆U1. On the contrary, we have already

demonstrated that ∆U1 is minimized with respect to εT at the origin. But the origin is only

a global minimum of ∆U1 for the trivial case of T = 2 when there is only the one future

weighting factor, ε2. In Appendix E we calculate the Hessian of ∆U1 at the origin for T = 3.

The diagonal elements are both positive, so the second self will prefer the realized path both

if ε2(6= 0) is small in magnitude while ε3 = 0 and if ε3 6= 0 while ε2 = 0. Nevertheless,
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the determinant of the Hessian is D3
1(1 − D3

1). Thus if D1 > 1, ∆U1 has a saddlepoint

at the origin. This explains why the subset of the parameter space in figure 2b where the

commitment path Pareto dominates the realized path radiates from the origin. For that

choice of D1, which is bigger than one, if we increase both ε2 and ε3 from zero in a right

proportion, the second self will prefer the commitment path to the realized path. For D1 < 1,

if we depart from the origin in any direction, the second self will for some positive distance

prefer the realized path over the commitment path.

Proposition 3 tells us where in the parameter space we will have ∂∆U1

∂εT
= 0 and ∂2∆U1

∂ε2T
> 0,

and it is certainly reasonable to search the neighborhood of such points for candidate discount

functions that have the commitment path Pareto dominate the realized path. Nevertheless

it is not sufficient for ∆U1 to be minimized with respect to εT to guarantee that ∆U1 < 0.

As we stated earlier, propositions 3 and (39) do imply that for a given choice of the

other future weighting factors, if ∆Uτ < 0 at ετT there will be an interval [Aτ , Bτ ] such that

∆Uτ ≤ 0 for εT ∈ [Aτ , Bτ ], which includes ετT . We will then have that the commitment path

Pareto dominates the realized path iff

εT ∈ ∩T−1
τ=2 (Aτ , Bτ ). (41)

We can use our results from Section 3 and (31) to construct upper and lower bounds on

εT that demarcate a proper subset of this band. That is to say, holding ε2, . . . , εT−1 fixed,

if εT is within these bounds then the commitment path will Pareto dominate the realized

path. These bounds will not, however, enclose all εT such that with these ε2, . . . , εT−1 the

commitment path will Pareto dominate the realized path.

Proposition 6. If a discount function yields a strictly concave log consumption profile (which

implies lower bounds on all of the εt), then if, for s = 1, . . . , T − 2,

εT < Gs = min{G1
s, . . . , G

T−1
s } (42)

the commitment path will Pareto dominate the realized path, where

Gτ
s = exp

∑s
i=0

[
P τ
i

(
ln φi

φi
+ ln(1 + εi) +

∑s
j=i+1 lnφj

)
+Qτ

i lnφi

]
∑T−1

i′=0 P
τ
i′

− 1, (43)
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P τ
i =

T∑
t=max{τ,T−i}

Dt−τ , (44)

and

Qτ
i =

T∑
t=max{τ,i+1}

Dt−τ . (45)

See Appendix F for the proof.

Note that we actually define a sequence of upper bounds in (43), where Gτ
1 ≤ · · · ≤ Gτ

T−2.

The right-hand side of (43) does not depend on εT , but as s is increased it includes more of

the φt and φt
φt

. Thus as we increase s, Gs will be a looser upper bound on the lower limit AT

of (41), but it will be more complicated to calculate.

5 Concluding remarks

Present and future bias are defined as a form of time-inconsistency in which individuals’

behavior regarding trade-offs in consumption at the beginning and end of the same time

interval vary between the near future and the far future. The common approach for modeling

this bias is with a relative discounting function, i.e. a form of discounting function which is

a function of the time to consumption from the decision-making present. As a consequence,

the optimal plan changes as an individual advances through the life span. A functional form

that is widely used in the literature as a proxy for non-exponential discounting functions is

the quasihyberbolic functional form, which is used to discuss the shape of the consumption

profile and the preferences of different selves.

In this paper we proposed a general representation of relative discounting functions that

allows us to focus on how the discounting function deviates from an exponential discounting

function, which does not exhibit time-inconsistency. We term the perturbation away from

the exponential case a future weighting factor εt. This specific format of the discounting

function provides a simple way to depict a future bias by having all εt be negative and

decreasing for t > 1, and a present bias by having all εt be positive and increasing for t > 1.

We find that for the log consumption profile to be locally concave, which is necessary at

the peak of a hump-shaped consumption profile, a future weighting growth factor must be

bigger than the weighted average of future weighting growth factor at shorter delays, where

the weights are the discount factor. This means that a present bias is a necessary but not

sufficient condition for the entire log consumption profile to be strictly concave.
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Also, using the proposed future weighting functional form, we explored the conditions

on the future weighting factors under which the consumption profile that is determined

in the first period of life will Pareto dominate the realized consumption profiles chosen at

each period. We find a sufficient condition for this Pareto dominance is that the realized

log consumption profile be strictly concave and the future weighting factor at the longest

delay not be too large. This result is especially useful because Pareto dominance of the

initial path is often used to motivate how one performs welfare analysis in these models

with time-inconsistent preferences, where choosing a reference consumption plan for the

analysis is a point of controversy in the literature. The results of our study suggest that

one has to be cautious when analyzing welfare with time-inconsistent preferences. The

consumption path chosen by one’s initial self is not necessarily the best choice to serve as

the benchmark for welfare purposes without additional information. As a matter of fact,

neither the commitment path nor the realized path will dominate each other for most of the

parameter space of possible discount functions.
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Appendices

A Simplifying the Concavity Condition

The log consumption profile is concave at t+ 1 iff we have∑T−t−1
z′=1 Dz′

1 (1 + εz′)∑T−t
s′=1D

s′
1 (1 + εs′)

∑T−t
s=1 D

s
1(1 + εs−1)∑T−t−1

z=1 Dz
1(1 + εz−1)

≤ 1.

We can rearrange this inequality as follows.∑T−t−1
z′=1 Dz′

1 (1 + εz′)∑T−t
s′=1D

s′
1 (1 + εs′)

≤
∑T−t−1

z=1 Dz
1(1 + εz−1)∑T−t

s=1 D
s
1(1 + εs−1)

1− DT−t
1 (1 + εT−t)∑T−t
s′=1 D

s′
1 (1 + εs′)

≤ 1− DT−t
1 (1 + εT−t−1)∑T−t
s=1 D

s
1(1 + εs−1)

1 + εT−t−1∑T−t
s=1 D

s
1(1 + εs−1)

≤ 1 + εT−t∑T−t
s′=1 D

s′
1 (1 + εs′)

We wish to isolate εT−t, which appears in both the numerator and the denominator of

the right-hand side.

1 + εT−t−1∑T−t−1
s=0 Ds+1

1 (1 + εs)
≤ 1 + εT−t∑T−t−1

s′=1 Ds′
1 (1 + εs′) +DT−t

1 (1 + εT−t)∑T−t−1
s′=1 Ds′

1 (1 + εs′) +DT−t
1 (1 + εT−t)∑T−t−1

s=0 Ds+1
1 (1 + εs)

(1 + εT−t−1) ≤ 1 + εT−t

∑T−t−1
s′=1 Ds′

1 (1 + εs′)∑T−t−1
s=0 Ds+1

1 (1 + εs)
(1 + εT−t−1) ≤ (1 + εT−t)

[
1− DT−t

1 (1 + εT−t−1)∑T−t−1
s=0 Ds+1

1 (1 + εs)

]
∑T−t−1

s′=1 Ds′
1 (1 + εs′)∑T−t−1

s=0 Ds+1
1 (1 + εs)

(1 + εT−t−1) ≤ (1 + εT−t)

[∑T−t−2
z′=0 Dz′+1

1 (1 + εz′)∑T−t−1
z=0 Dz+1

1 (1 + εz)

]
Thus we obtain the condition∑T−t−1

z=1 Dz
1(1 + εz)∑T−t−2

z′=0 Dz′+1
1 (1 + εz′)

(1 + εT−t−1) ≤ 1 + εT−t (46)

for concavity at t+ 1.
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B Derivation of Eq. (37)

ετT =

∑T−2
i=0 D

i
1(1 + εi+1)∑T−1

t=τ D
t−1
1 (1 + εt−τ )

(1 + εT−τ )− 1

=

∑T−2
i=0 D

i
1(1 + εi+1)∑T−τ−1

t=0 Dt+τ−1
1 (1 + εt)

(1 + εT−τ )− 1

= D1−τ
1

∑T−2
i=0 D

i
1(1 + εi+1)∑T−τ−1

t=0 Dt
1(1 + εt)

(1 + εT−τ )− 1

= D1−τ
1

∑T−2
i=0 Diφi∑T−τ−1
t=0 Dt

(1 + εT−τ )− 1.

C Derivation of limits of ∆Uτ

lim
εT→∞

∆Uτ = lim
εT→∞

T∑
t=τ

t−1∑
i=0

Dt−τ ln
φT−t+i
φi

=
T∑
t=τ

t−1∑
i=0

Dt−τ lim
εT→∞

lnφT−t+i −
T∑
t=τ

t−1∑
i=0

Dt−τ lim
εT→∞

lnφi

=
T∑
t=τ

t−2∑
i=0

Dt−τ lim
εT→∞

lnφT−t+i +
T∑
t=τ

Dt−τ lim
εT→∞

lnφT−t+(t−1) −
T−1∑
t=τ

t−1∑
i=0

Dt−τ lim
εT→∞

lnφi

−
T−1∑
i=0

DT−τ lim
εT→∞

lnφi

=
T∑
t=τ

t−2∑
i=0

Dt−τ lnφT−t+i +
T∑
t=τ

Dt−τ lim
εT→∞

lnφT−1 −
T−1∑
t=τ

t−1∑
i=0

Dt−τ lnφi −
T−2∑
i=0

DT−τ lnφi −DT−τ lim
εT→∞

lnφT−1

lim
εT→∞

lnφT−1 = lim
εT→∞

ln εT − ln(1 + εT−1) = lim
εT→∞

ln εT
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lim
εT→∞

lnφT−1 = lim
εT→∞

ln

(∑T−1
s=0 Dsφs∑T−1
s′=0 Ds′

)

= lim
εT→∞

ln
(
DT−1

1 (1 + εT )
)
− ln

(
T−1∑
s′=0

Ds′

)

= lnDT−1
1 − ln

(
T−1∑
s′=0

Ds′

)
+ lim

εT→∞
ln εT = lim

εT→∞
ln εT

For τ < T ,

lim
εT→∞

∆Uτ =
T∑
t=τ

t−2∑
i=0

Dt−τ lnφT−t+i −
T−1∑
t=τ

t−1∑
i=0

Dt−τ lnφi −
T−2∑
i=0

DT−τ lnφi +

(
T−1∑
t=τ

Dt−τ

)
lim
εT→∞

ln εT

=

(
T−1∑
t=τ

Dt−τ

)
lim
εT→∞

ln εT > 0.

D Gradient of ∆U1 at the Origin

∆Uτ =
T∑
t=τ

t−1∑
i=0

Dt−τ ln
φT−t+i
φi

.

∆U1 =
T∑
s=1

s−1∑
i=0

Ds−1 ln
φT−s+i
φi

∂∆U1

∂εt
=

T∑
s=1

s−1∑
i=0

[
∂Ds−1

∂εt
ln
φT−s+i
φi

+Ds−1

(
∂ lnφT−s+i

∂εt
− 1

1 + εi+1

∂εi+1

∂εt
+

1

1 + εi

∂εi
∂εt

)]

φs =

∑s
i=0Diφi∑s
j=0Dj

∂ lnφs
∂εt

=

∑s
i=0

(
∂Di
∂εt
φi +Di

∂φi
∂εt

)
∑s

i′=0 Di′φi′
−
∑s

j=0
∂Dj
∂εt∑s

j′=0 Dj′

∂φi
∂εt

=
∂

∂εt

(
1 + εi+1

1 + εi

)
=

δi+1,t

1 + εi
− 1 + εi+1

(1 + εi)2
δi,t

∂φi
∂εt

∣∣∣∣
ε=0

= δi+1,t − δi,t
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∂ lnφs
∂εt

∣∣∣∣
ε=0

=

∑s
i=0

(
∂Di
∂εt

+Di
1(δi+1,t − δi,t)

)
∑s

i′=0D
i′
1

−
∑s

j=0
∂Dj
∂εt∑s

j′=0D
j′

1

=

∑s
i=0D

i
1(δi+1,t − δi,t)∑s
i′=0D

i′
1

∂∆U1

∂εt

∣∣∣∣
ε=0

=
T∑
s=1

s−1∑
i=0

Ds−1
1

(
∂ lnφT−s+i

∂εt
− δi+1,t + δi,t

)

=
T∑
s=1

s−1∑
i=0

Ds−1
1

(∑T−s+i
j=0 Dj

1(δj+1,t − δj,t)∑T−s+i
s′=0 Ds′

1

− δi+1,t + δi,t

)

Suppose T = 2.

∂∆U1

∂ε2

∣∣∣∣
ε=0

=
2∑
s=1

s−1∑
i=0

Ds−1
1

(∑2−s+i
j=0 Dj

1(δj+1,2 − δj,2)∑2−s+i
s′=0 Ds′

1

− δi+1,2 + δi,2

)

∂∆U1

∂ε2

∣∣∣∣
ε=0

=
0∑
i=0

D0
1

(∑1+i
j=0D

j
1(δj+1,2 − δj,2)∑1+i
s′=0D

s′
1

− δi+1,2 + δi,2

)

+
1∑
i=0

D1
1

(∑i
j=0D

j
1(δj+1,2 − δj,2)∑i
s′=0D

s′
1

− δi+1,2 + δi,2

)

=

∑1
j=0D

j
1(δj+1,2 − δj,2)∑1
s′=0D

s′
1

+D1

∑0
j=0 D

j
1(δj+1,2 − δj,2)∑0
s′=0 D

s′
1

+D1

(∑1
j=0 D

j
1(δj+1,2 − δj,2)∑1
s′=0D

s′
1

− 1

)

=
D1

1 +D1

+D1

(
D1

1 +D1

− 1

)
=
D1 +D2

1

1 +D1

−D1 = 0

∂∆U1

∂εt

∣∣∣∣
ε=0

=
T∑
s=1

s−1∑
i=0

Ds−1
1

(∑T−s+i
j=0 Dj

1(δj+1,t − δj,t)∑T−s+i
s′=0 Ds′

1

− δi+1,t + δi,t

)

S = {(s, i) ∈ Z2 : 1 ≤ s ≤ T ∧ 0 ≤ i ≤ s− 1}

S ′ = {(s, i) ∈ Z2 : 0 ≤ i ≤ T − 1 ∧ i+ 1 ≤ s ≤ T}

If (s, i) ∈ S, 1 ≤ s ≤ T ∧ 0 ≤ i ≤ s− 1. Thus 0 ≤ i ≤ s− 1 ≤ T − 1, and i+ 1 ≤ s ≤ T , so

(s, i) ∈ S ′.
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If (s, i) ∈ S ′, 0 ≤ i ≤ T − 1 ∧ i+ 1 ≤ s ≤ T , 1 ≤ i+ 1 ≤ s ≤ T and 0 ≤ i ≤ s− 1.

∂∆U1

∂εt

∣∣∣∣
ε=0

=
T−1∑
i=0

T∑
s=i+1

Ds−1
1

(∑T−s+i
j=0 Dj

1(δj+1,t − δj,t)∑T−s+i
s′=0 Ds′

1

− δi+1,t + δi,t

)

T−1∑
i=0

T∑
s=i+1

Ds−1
1 (δi+1,t − δi,t) =

T∑
s=t

Ds−1
1 − (1− δtT )

T∑
s=t+1

Ds−1
1

= Dt−1
1 + δtT

T∑
s=t+1

Ds−1
1 = Dt−1

1

V1 =
T∑
s=1

s−1∑
i=0

T−s+i∑
j=0

Ds+j−1
1 (δj+1,t − δj,t)∑T−s+i

s′=0 Ds′
1

Let z = s− i, so i = s− z

V1 =
T∑
s=1

s∑
z=1

T−z∑
j=0

Ds+j−1
1 (δj+1,t − δj,t)∑T−z

s′=0D
s′
1

S = {(z, j) ∈ Z2 : 1 ≤ z ≤ s ∧ 0 ≤ j ≤ T − z}

S ′ = {(z, j) ∈ Z2 : 0 ≤ j ≤ T − 1 ∧ 1 ≤ z ≤ min{s, T − j}}

If (z, j) ∈ S, 1 ≤ z ≤ s ∧ 0 ≤ j ∧ j ≤ T − z. Thus 0 ≤ j ≤ T − z ≤ T − 1. 1 ≤ z, z ≤ s,

and z ≤ T − j. Thus 1 ≤ z ≤ min{s, T − j}. So (z, j) ∈ S ′.
If (z, j) ∈ S ′, 0 ≤ j ≤ T − 1∧ 1 ≤ z ≤ min{s, T − j}. Thus 1 ≤ z ≤ s. Since z ≤ T − j,
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we have j ≤ T − z. Thus 0 ≤ j ≤ T − z. Thus (z, j) ∈ S.

V1 =
T∑
s=1

T−1∑
j=0

min{s,T−j}∑
z=1

Ds+j−1
1 (δj+1,t − δj,t)∑T−z

s′=0D
s′
1

=
T−1∑
j=0

T∑
s=1

min{s,T−j}∑
z=1

Ds+j−1
1 (δj+1,t − δj,t)∑T−z

s′=0D
s′
1

=
T∑
s=1

min{s,T−t+1}∑
z=1

Ds+t−2
1∑T−z
s′=0D

s′
1

− (1− δt,T )
T∑
s=1

min{s,T−t}∑
z=1

Ds+t−1
1∑T−z
s′=0D

s′
1

=
T∑
s=1

min{s,T−t+1}∑
z=1

Ds+t−2
1∑T−z
s′=0D

s′
1

−
min{s,T−t}∑

z=1

Ds+t−1
1∑T−z
s′=0D

s′
1

+ δt,T

min{s,T−t}∑
z=1

Ds+t−1
1∑T−z
s′=0 D

s′
1


=

T∑
s=1

min{s,T−t+1}∑
z=1

Ds+t−2
1∑T−z
s′=0D

s′
1

−
min{s,T−t}∑

z=1

Ds+t−1
1∑T−z
s′=0D

s′
1


If T = t = 2,

V1 =
2∑
s=1

min{s,1}∑
z=1

Ds+2−2
1∑2−z
s′=0D

s′
1

−
min{s,0}∑
z=1

Ds+2−1
1∑2−z
s′=0D

s′
1


=

2∑
s=1

min{s,1}∑
z=1

Ds
1∑2−z

s′=0D
s′
1

=

min{1,1}∑
z=1

D1
1∑2−z

s′=0D
s′
1

+

min{2,1}∑
z=1

D2
1∑2−z

s′=0 D
s′
1

=
D1

1 +D1

+
D2

1

1 +D1

= D1
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V1 = Dt−1
1

T∑
s=1

min{s,T−t+1}∑
z=1

Ds−1
1∑T−z

s′=0D
s′
1

−
min{s,T−t}∑

z=1

Ds
1∑T−z

s′=0 D
s′
1


= Dt−1

1

 T∑
s=1

min{s,T−t+1}∑
z=1

Ds−1
1∑T−z

s′=0D
s′
1

−
T∑
s=1

min{s,T−t}∑
z=1

Ds
1∑T−z

s′=0 D
s′
1


= Dt−1

1

T−1∑
s=0

min{s+1,T−t+1}∑
z=1

Ds
1∑T−z

s′=0 D
s′
1

−
T∑
s=1

min{s,T−t}∑
z=1

Ds
1∑T−z

s′=0D
s′
1


= Dt−1

1

min{1,T−t+1}∑
z=1

D0
1∑T−z

s′=0D
s′
1

+
T−1∑
s=1

Ds
1∑T−min{s,T−t}−1

s′=0 Ds′
1

−
min{T,T−t}∑

z=1

DT
1∑T−z

s′=0 D
s′
1


= Dt−1

1

[
1∑T−1

s′=0D
s′
1

+
T−1∑
s=1

Ds
1∑T−min{s,T−t}−1

s′=0 Ds′
1

−
T−t∑
z=1

DT
1∑T−z

s′=0 D
s′
1

]

Suppose T = 3 and t = 2.

V1 =
3∑
s=1

min{s,2}∑
z=1

Ds
1∑3−z

s′=0 D
s′
1

−
min{s,1}∑
z=1

Ds+1
1∑3−z

s′=0 D
s′
1


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V1 =

min{1,2}∑
z=1

D1
1∑3−z

s′=0D
s′
1

−
min{1,1}∑
z=1

D2
1∑3−z

s′=0 D
s′
1

+

min{2,2}∑
z=1

D2
1∑3−z

s′=0D
s′
1

−
min{2,1}∑
z=1

D3
1∑3−z

s′=0 D
s′
1

+

min{3,2}∑
z=1

D3
1∑3−z

s′=0D
s′
1

−
min{3,1}∑
z=1

D4
1∑3−z

s′=0 D
s′
1

=
D1

1 +D1 +D2
1

− D2
1

1 +D1 +D2
1

+
D2

1

1 +D1 +D2
1

+
D2

1

1 +D1

− D3
1

1 +D1 +D2
1

+
D3

1

1 +D1 +D2
1

+̇
D3

1

1 +D1

− D4
1

1 +D1 +D2
1

=
D1 −D4

1

1 +D1 +D2
1

+D2
1

=
D1 −D4

1 +D2
1 +D3

1 +D4
1

1 +D1 +D2
1

=
D1 +D2

1 +D3
1

1 +D1 +D2
1

= D1

If T = t = 3,

V1 =
3∑
s=1

min{s,1}∑
z=1

Ds+1
1∑3−z

s′=0D
s′
1

−
min{s,0}∑
z=1

Ds+2
1∑3−z

s′=0D
s′
1


=

D2
1

1 +D1 +D2
1

+
D3

1

1 +D1 +D2
1

+
D4

1

1 +D1 +D2
1

= D2
1

V1 = Dt−1
1

[
1∑T−1

s′=0 D
s′
1

+
T−1∑
s=1

Ds
1∑T−min{s,T−t}−1

s′=0 Ds′
1

−
T−t∑
z=1

DT
1∑T−z

s′=0D
s′
1

]
If T = 3 and t = 2,

V1 = D1

[
1∑2

s′=0D
s′
1

+
2∑
s=1

Ds
1∑3−min{s,1}−1

s′=0 Ds′
1

−
1∑
z=1

D3
1∑3−z

s′=0D
s′
1

]

= D1

[
1

1 +D1 +D2
1

+
D1

1 +D1

+
D2

1

1 +D1

− D3
1

1 +D1 +D2
1

]
= D1

[
1−D3

1

1 +D1 +D2
1

+D1

]
= D1

1−D3
1 +D1 +D2

1 +D3
1

1 +D1 +D2
1

= D1
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V1 =
T∑
s=1

s∑
z=1

T−z∑
j=0

Ds+j−1
1 (δj+1,t − δj,t)∑T−z

s′=0D
s′
1

Let S = {(s, z) : 1 ≤ s ≤ T ∧ 1 ≤ z ≤ s} and S ′ = {(s, z) : 1 ≤ z ≤ T ∧ z ≤ s ≤ T}. Let

(s, z) ∈ S. Then 1 ≤ s ≤ T ∧ 1 ≤ z ≤ s, so 1 ≤ z ≤ s ≤ T and z ≤ s ≤ T , so (s, z) ∈ S ′.
Let (s, z) ∈ S ′. Then 1 ≤ z ≤ T ∧ z ≤ s ≤ T , so 1 ≤ z ≤ s ≤ T and 1 ≤ z ≤ s.

V1 =
T∑
z=1

T∑
s=z

T−z∑
j=0

Ds+j−1
1 (δj+1,t − δj,t)∑T−z

s′=0D
s′
1

=
T∑
z=1

T−z∑
s=0

T−z∑
j=0

Ds+z+j−1
1 (δj+1,t − δj,t)∑T−z

s′=0D
s′
1

=
T∑
z=1

T−z∑
j=0

T−z∑
s=0

Ds+z+j−1
1 (δj+1,t − δj,t)∑T−z

s′=0D
s′
1

=
T∑
z=1

T−z∑
j=0

Dz+j−1
1 (δj+1,t − δj,t)

Let T = t = 2.

V1 =
2∑
z=1

2−z∑
j=0

Dz+j−1
1 (δj+1,2 − δj,2)

=
1∑
j=0

Dj
1(δj+1,2 − δj,2) +

0∑
j=0

Dj+1
1 (δj+1,2 − δj,2) = D1

Let T = t = 3

V1 =
3∑
z=1

3−z∑
j=0

Dz+j−1
1 (δj+1,3 − δj,3)

=
2∑
j=0

Dj
1(δj+1,3 − δj,3)

+
1∑
j=0

Dj+1
1 (δj+1,3 − δj,3)

+
0∑
j=0

Dj+2
1 (δj+1,3 − δj,3)

= D2
1
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Let T = t = 2

V1 =
3∑
z=1

3−z∑
j=0

Dz+j−1
1 (δj+1,2 − δj,2)

=
2∑
j=0

Dj
1(δj+1,2 − δj,2)

+
1∑
j=0

Dj+1
1 (δj+1,2 − δj,2)

+
0∑
j=0

Dj+2
1 (δj+1,2 − δj,2)

= D1 −D2
1 +D2

1 = D1

V1 =
T∑
z=1

T−z∑
j=0

Dz+j−1
1 (δj+1,t − δj,t)

S = {(z, j) : 1 ≤ z ≤ T ∧ 0 ≤ j ≤ T − z}

S ′ = {(z, j) : 0 ≤ j ≤ T − 1 ∧ 1 ≤ z ≤ T − j}

Let (z, j) ∈ S. Then 1 ≤ z ≤ T ∧ 0 ≤ j ≤ T − z. So z ≤ T − j, and 1 ≤ z ≤ T − j while

0 ≤ j ≤ T − z ≤ T − 1. Thus (z, j) ∈ S ′.
Let (z, j) ∈ S ′. Then 0 ≤ j ≤ T − 1 ∧ 1 ≤ z ≤ T − j. So j ≤ T − z, so 0 ≤ j ≤ T − z.

1 ≤ z ≤ T − j ≤ T . Thus (z, j) ∈ S.

V1 =
T−1∑
j=0

T−j∑
z=1

Dz+j−1
1 (δj+1,t − δj,t)

=

T−(t−1)∑
z=1

Dz+t−2
1 − (1− δTt)

T−t∑
z=1

Dz+t−1
1

If T = t,

V1 =
1∑
z=1

Dz+t−2
1 = DT−1

1

If t < T ,

V1 =
T−t+1∑
z=1

Dz+t−2
1 −

T−t∑
z=1

Dz+t−1
1
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Let s = z − 1, so z = s+ 1.

V1 =
T−t∑
s=0

Ds+1+t−2
1 −

T−t∑
z=1

Dz+t−1
1

=
T−t∑
s=0

Ds+t−1
1 −

T−t∑
z=1

Dz+t−1
1

= Dt−1
1

Thus

∂∆U1

∂εt

∣∣∣∣
ε=0

=
T−1∑
i=0

T∑
s=i+1

Ds−1
1

(∑T−s+i
j=0 Dj

1(δj+1,t − δj,t)∑T−s+i
s′=0 Ds′

1

− δi+1,t + δi,t

)
= Dt−1

1 −Dt−1
1 = 0

E Hessian of ∆U1 at the Origin for T = 3

∆U1 =
T−1∑
s=1

lnφs

T−1∑
t=max{T−s−1,0}

Dt − lnφs

T−1∑
t=max{0,s}

Dt


=

T−1∑
s=1

[
lnφs

T−1∑
t=T−1−s

Dt − lnφs

T−1∑
t=s

Dt

]

Only φT−1 and φT−1 will depend on ε3, so

∆U1 = lnφT−1

T−1∑
t=0

Dt −DT−1 ln

(
1 + εT

1 + εT−1

)

φT−1 =

∑T−1
z=0 Dzφz∑T−1
z=0 Dz

∂ lnφT−1

∂εT
=
DT−1

1
1+εT−1∑T−1

z=0 Dzφz
=

DT−1
1∑T−1

z=0 Dzφz

∂∆U1

∂εT
=

DT−1
1∑T−1

z=0 Dzφz

T−1∑
t=0

Dt −
DT−1

1 + εT
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If ε2 = · · · = εT−1 = 0,

∂∆U1

∂εT
= DT−1

1

∑T−1
t=0 D

t
1∑T−2

z=0 D
z
1 +DT−1

1 (1 + εT )
− DT−1

1

1 + εT

= DT−1
1

(1 + εT )
∑T−1

t=0 D
t
1 −

[∑T−2
z=0 D

z
1 +DT−1

1 (1 + εT )
]

(∑T−1
z′=0 D

z′
1 +DT−1

1 εT

)
(1 + εT )

= DT−1
1

(1 + εT )
∑T−2

t=0 D
t
1 −

∑T−2
z=0 D

z
1(∑T−1

z′=0D
z′
1 +DT−1

1 εT

)
(1 + εT )

= DT−1
1

∑T−2
t=0 D

t
1(∑T−1

z′=0D
z′
1 +DT−1

1 εT

)
(1 + εT )

εT

This is positive except when εT = 0.

∂2∆U1

∂ε2
T

= DT−1
1

T−2∑
t=0

Dt
1

(∑T−1
z=0 D

z
1 +DT−1

1 εT

)
(1 + εT )− εT

[∑T−1
z=0 D

z
1 +DT−1

1 εT +DT−1
1 (1 + εT )

]
[(∑T−1

z′=0D
z′
1 +DT−1

1 εT

)
(1 + εT )

]2

∂2∆U1

∂ε2
T

∣∣∣∣
ε=0

= DT−1
1

T−2∑
t=0

Dt
1

∑T−1
z=0 D

z
1[∑T−1

z′=0D
z′
1

]2 > 0

Thus if ε2 = · · · = εT−1 = 0, ∆U1 ≥ 0 with equality only if εT = 0.

∆U1 = (D1 +D2
1(1 + ε2))

(
ln

(
1 +

D1

1 +D1

ε2

)
− ln(1 + ε2)

)
+(1 +D1 +D2

1(1 + ε2)) ln

(
1 +D1 +D2

1 +D1ε2 +D2
1ε3

1 +D1 +D2
1 +D2

1ε2

)
−D2

1(1 + ε2) ln

(
1 + ε3

1 + ε2

)

∂∆U1

∂ε2

= D2
1

(
ln

(
1 +

D1

1 +D1

ε2

)
− ln(1 + ε2)

)
+ (D1 +D2

1(1 + ε2))

(
D1

1+D1

1 + D1

1+D1
ε2

− 1

1 + ε2

)

+D2
1 ln

(
1 +D1 +D2

1 +D1ε2 +D2
1ε3

1 +D1 +D2
1 +D2

1ε2

)
+(1 +D1 +D2

1(1 + ε2))

[
D1

1 +D1 +D2
1 +D1ε2 +D2

1ε3

− D2
1

1 +D1 +D2
1 +D2

1ε2

]
−D2

1 ln

(
1 + ε3

1 + ε2

)
+D2

1

1 + ε2

1 + ε2
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∂∆U1

∂ε2

= D2
1

(
ln

(
1 +

D1

1 +D1

ε2

)
− ln(1 + ε2)

)
+ (D1 +D2

1(1 + ε2))

(
D1

1 +D1 +D1ε2

− 1

1 + ε2

)
+D2

1 ln

(
1 +D1 +D2

1 +D1ε2 +D2
1ε3

1 +D1 +D2
1 +D2

1ε2

)
+(1 +D1 +D2

1(1 + ε2))

[
D1

1 +D1 +D2
1 +D1ε2 +D2

1ε3

− D2
1

1 +D1 +D2
1 +D2

1ε2

]
−D2

1 ln

(
1 + ε3

1 + ε2

)
+D2

1

As a check,

∂∆U1

∂ε2

∣∣∣∣
ε2=ε3=0

= (D1 +D2
1)

(
D1

1 +D1

− 1

)
+(1 +D1 +D2

1)

[
D1 −D2

1

1 +D1 +D2
1

]
+D2

1

= −D1 +D2
1

1 +D1

+D1 −D2
1 +D2

1 = 0

∂∆U1

∂ε2

= (D1 +D2
1(1 + ε2))

(
D1

1 +D1 +D1ε2

− 1

1 + ε2

)
+D2

1

+D2
1 ln

((
1 +

D1

1 +D1

ε2

)
1 +D1 +D2

1 +D1ε2 +D2
1ε3

(1 +D1 +D2
1 +D2

1ε2)(1 + ε3)

)
+(1 +D1 +D2

1(1 + ε2))

[
D1

1 +D1 +D2
1 +D1ε2 +D2

1ε3

− D2
1

1 +D1 +D2
1 +D2

1ε2

]

∂2∆U1

∂ε2∂ε3

= D2
1

[
D2

1

1 +D1 +D2
1 +D1ε2 +D2

1ε3

− 1

1 + ε3

]
−D3

1

1 +D1 +D2
1(1 + ε2)

(1 +D1 +D2
1 +D1ε2 +D2

1ε3)
2

∂2∆U1

∂ε2∂ε3

∣∣∣∣
ε2=ε3=0

= D2
1

[
D2

1

1 +D1 +D2
1

− 1

]
−D3

1

1 +D1 +D2
1

(1 +D1 +D2
1)2

= −D2
1

1 +D1

1 +D1 +D2
1

− D3
1

1 +D1 +D2
1

∂2∆U1

∂ε2∂ε3

∣∣∣∣
ε2=ε3=0

= − D2
1

1 +D1 +D2
1

(1 + 2D1)
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∂2∆U1

∂ε2
3

∣∣∣∣
ε2=ε3=0

=
D2

1

1 +D1 +D2
1

(1 +D1)

According to Mathematica,

∂2∆U1

∂ε2
2

∣∣∣∣
ε2=ε3=0

=
D1(1 +D1 + 4D2

1 + 3D3
1)

(1 +D1)(1 +D1 +D2
1)

∆U1 =
D2

1 +D3
1

2(1 +D1 +D2
1)
ε2

3 −
D2

1 + 2D3
1

1 +D1 +D2
1

ε2ε3 +
D1 +D2

1 + 4D3
1 + 3D4

1

2(1 +D1)(1 +D1 +D2
1)
ε2

2 +O(ε3)

=
1

2

1

1 +D1 +D2
1

[
ε2 ε3

] [ D2
1(1 +D1) −D2

1(1 + 2D1)

−D2
1(1 + 2D1)

D1+D2
1+4D3

1+3D4
1

(1+D1)

][
ε2

ε3

]
+O(ε3)

∣∣∣∣∣ D2
1(1 +D1) −D2

1(1 + 2D1)

−D2
1(1 + 2D1)

D1+D2
1+4D3

1+3D4
1

(1+D1)

∣∣∣∣∣
= D3

1 +D4
1 + 4D5

1 + 3D6
1 −D4

1(1 + 2D1)2

= D3
1 +D4

1 + 4D5
1 + 3D6

1 −D4
1 − 4D5

1 − 4D6
1

= D3
1 −D6

1

= D3
1(1−D3

1)

If D1 > 1, ∆U1 < 0 is possible. However, if D1 < 1, the determinant is nonnegative. Thus

in a deleted neighborhood of (ε2, ε3) = (0, 0), ∆U1 must be strictly nonnegative.

F Sufficient Upper Bound on εT for Pareto Dominance

of the Commitment Path

∆Uτ =
T∑
t=τ

t−1∑
i=0

Dt−τ ln
φT−t+i
φi

.

We can rewrite this as

∆Uτ =
T∑
t=τ

T−1∑
j=T−t

Dt−τ lnφj −
T∑
t=τ

t−1∑
i=0

Dt−τ lnφi,
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where j = T − t+ i. The first terms are all positive while the second terms are all negative.

S = {(t, i) : τ ≤ t ≤ T ∧ 0 ≤ i ≤ t− 1}. S ′ = {(t, i) : 0 ≤ i ≤ T − 1 ∧max{τ, i + 1} ≤
t ≤ T}. Let (t, i) ∈ S, so τ ≤ t ≤ T ∧ 0 ≤ i ≤ t− 1. Then 0 ≤ i ≤ t− 1 ≤ T − 1. We have

both τ ≤ t and i+ 1 ≤ t, so max{τ, i+ 1} ≤ t ≤ T . Thus (t, i) ∈ S ′.
Now let (t, i) ∈ S ′, so 0 ≤ i ≤ T − 1 ∧ max{τ, i + 1} ≤ t ≤ T . Then τ ≤ t ≤ T .

0 ≤ i ≤ t− 1. Thus (t, i) ∈ S.

Let S = {(t, j) : τ ≤ t ≤ T ∧ T − t ≤ j ≤ T − 1}. Let S ′ = {(t, j) : 0 ≤ j ≤
T − 1 ∧max{τ, T − j} ≤ t ≤ T}. Let (t, j) ∈ S. Then τ ≤ t ≤ T ∧ T − t ≤ j ≤ T − 1. So

0 ≤ T − t ≤ j ≤ T − 1, and we have both τ ≤ t and T − j ≤ t, so max{τ, T − j} ≤ t ≤ T .

Thus (t, j) ∈ S ′. Let (t, j) ∈ S ′. Then 0 ≤ j ≤ T − 1∧max{τ, T − j} ≤ t ≤ T . τ ≤ t ≤ T ,

and T − t ≤ j ≤ T − 1. Thus (t, j) ∈ S.

∆Uτ =
T−1∑
j=0

T∑
t=max{τ,T−j}

Dt−τ lnφj −
T−1∑
i=0

T∑
t=max{τ,i+1}

Dt−τ lnφi.

The first terms are all positive and the second terms are all negative. Let us define

P τ
i =

T∑
t=max{τ,T−i}

Dt−τ (47)

and

Qτ
i =

T∑
t=max{τ,i+1}

Dt−τ (48)

Thus we have

∆Uτ =
T−1∑
i=0

[
P τ
i lnφi −Qτ

i lnφi
]

=
T−1∑
i=0

[
P τ
i

(
ln
φi
φi

+ lnφi

)
−Qτ

i lnφi

]

=
T−1∑
i=0

[
P τ
i

(
ln
φi
φi

+
T−1∑
j=i

lnφj −
T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]

=
T−1∑
i=0

[
Aτi

(
ln
φi
φi

+ ln
1 + εT
1 + εi

−
T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]
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∆Uτ =
T−1∑
i=0

P τ
i ln(1 + εT ) +

T−1∑
i=0

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]
Suppose that s < T − 1. Suppose that

εT ≤ Bτ
s = exp

∑s
i=0

[
P τ
i

(
ln φi

φi
+ ln(1 + εi) +

∑s
j=i+1 lnφj

)
+Qτ

i lnφi

]
∑T−1

i′=0 P
τ
i′

− 1.

Then we will have

T−1∑
i=0

P τ
i ln(1 + εT ) +

s∑
i=0

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

s∑
j=i+1

lnφj

)
−Qτ

i lnφi

]
≤ 0

since

0 ≥
s∑
i=0

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=s+1

lnφj

)
−Qτ

i lnφi

]

+
T−1∑
i=s+1

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]

we have

0 ≥
T−1∑
i=0

P τ
i ln(1 + εT ) +

s∑
i=0

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

s∑
j=i+1

lnφj

)
−Qτ

i lnφi

]

+
s∑
i=0

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=s+1

lnφj

)
−Qτ

i lnφi

]

+
T−1∑
i=s+1

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]

=
T−1∑
i=0

P τ
i ln(1 + εT ) +

s∑
i=0

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]

+
T−1∑
i=s+1

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]

=
T−1∑
i=0

P τ
i ln(1 + εT ) +

T−1∑
i=0

[
P τ
i

(
ln
φi
φi
− ln(1 + εi)−

T−1∑
j=i+1

lnφj

)
−Qτ

i lnφi

]
= ∆Uτ .
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